Το e-steki είναι μια από τις μεγαλύτερες ελληνικές διαδικτυακές κοινότητες με 66,091 εγγεγραμμένα μέλη και 2,388,024 μηνύματα σε 74,646 θέματα. Αυτή τη στιγμή μαζί με εσάς απολαμβάνουν το e-steki άλλα

Καλώς ήρθατε στο e-steki!

Εγγραφή Βοήθεια

Ευκλείδειος Αλγόριθμος και η πολυπλοκότητα του

borat (Γιάννης.-)

Επιφανές Μέλος

Το avatar του χρήστη borat
Ο Γιάννης.- αυτή τη στιγμή δεν είναι συνδεδεμένος Είναι 33 ετών , επαγγέλεται Μαέστρος και μας γράφει απο Ερμιόνη (Αργολίδα). Έχει γράψει 4,524 μηνύματα.

O borat ΖΟΡΤ έγραψε στις 15:00, 19-01-11:

#1
Καλησπέρα και πάλι
κόσμε εθισμένε στις θετικές επιστήμες και στο ίντερνετ.

Η ερώτηση είναι απλή και απευθύνεται
σε μαθηματικούς και κομπιουτεράδες.
Θέλω να μάθω πράγματα σχετικά με τον Ευκλ. Αλγόριθμο του και τη πολυπλοκότητα αυτού στα εξής σύνολα
  • μιγαδικοί
  • πραγματικοί
  • σύνολο πολυωνύμων
Θα με βοηθούσε το οτιδήποτε, λινκς, βιβλιογραφία, πληροφορίες.
Ό,τι έχετε ευχαρίστηση.

πς: πάνε χρόνια που καθάρισα με τις πληροφορικές και πλέον δυσκολεύομαι με αυτά.


Ευχαριστώ εκ των προτέρων.

Σημείωση: Το μήνυμα αυτό γράφτηκε πάνω από 7 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

0 Δεν μπορείτε να αξιολογήσετε αρνητικά το μήνυμα αυτόΔεν μπορείτε να αξιολογήσετε θετικά το μήνυμα αυτό
Παράθεση

borat (Γιάννης.-)

Επιφανές Μέλος

Το avatar του χρήστη borat
Ο Γιάννης.- αυτή τη στιγμή δεν είναι συνδεδεμένος Είναι 33 ετών , επαγγέλεται Μαέστρος και μας γράφει απο Ερμιόνη (Αργολίδα). Έχει γράψει 4,524 μηνύματα.

O borat ΖΟΡΤ έγραψε στις 16:53, 22-01-11:

#2
Κανείς;

Σημείωση: Το μήνυμα αυτό γράφτηκε πάνω από 6 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

0 Δεν μπορείτε να αξιολογήσετε αρνητικά το μήνυμα αυτόΔεν μπορείτε να αξιολογήσετε θετικά το μήνυμα αυτό
Παράθεση

Ciela

Περιβόητο Μέλος

Το avatar του χρήστη Ciela
H Ciela αυτή τη στιγμή δεν είναι συνδεδεμένη. Επαγγέλεται Μαέστρος . Έχει γράψει 1,449 μηνύματα.

H Ciela έγραψε στις 17:05, 22-01-11:

#3
για το R και για τα πολυωνυμα έχει το βιβλιο εδω
στα αντιστοιχα κεφαλαια.
(επειδη βλεπω οτι δε φαινονται τα περιεχομενα κοιταξε στη σελιδα 19+ για το R και στην 108+ για το R[x])

Σημείωση: Το μήνυμα αυτό γράφτηκε πάνω από 6 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

0 Δεν μπορείτε να αξιολογήσετε αρνητικά το μήνυμα αυτόΔεν μπορείτε να αξιολογήσετε θετικά το μήνυμα αυτό
Παράθεση

Rempeskes

Αποκλεισμένος χρήστης

Το avatar του χρήστη Rempeskes
Ο Rempeskes αυτή τη στιγμή δεν είναι συνδεδεμένος Επαγγέλεται Hair stylist . Έχει γράψει 5,593 μηνύματα.

O Rempeskes έγραψε στις 14:00, 25-01-11:

#4
Θιελα, δεν αναφέρεται σε ζητήματα πολυπλοκότητας το βιβλίο που παραθέτεις


Ούτε και εγώ βασικά είμαι εξπέρ στο ζήτημα, μα σκέφτομαι τα εξής.

- Πραγματικοί. Τα υπόλοιπα θα είναι πραγματικοί αριθμοί επίσης, οπότε ο αλγόριθμος - εξόν από αριθμήσιμο σύνολο- δεν θα τερματίζει σε πεπερασμένο αριθμό βημάτων. Οπότε ο αλγόριθμος είναι έναν βαθμό παραπάνω πολύπλοκος απ' ότι στην περίπτωση των ακεραίων.

- Μιγαδικοί. Δεν πρόκειται παρά για ζεύγη πραγματικών αριθμών, οπότε ο αλγόριθμος της προηγούμενης περίπτωσης εφαρμόζεται παράλληλα σε κάθε συνιστώσα. Συνεπώς, δεν αυξάνεται η πολυπλοκότητα σε αυτή την περίπτωση.

- Πολυώνυμα. Εδώ πάλι το υπόλοιπο θα είναι πολυώνυμο, οπότε θα έχει βαθμό έναν φυσικό αριθμό (ή μηδέν). Οπότε
ο αλγόριθμος σε κάθε βήμα θα υπολογίζει ένα πολυώνυμο βαθμού μικρότερου (ή ίσου, λολ) από τον διαιρετέο. Δηλαδή,
αναγκαστικά θα τερματίζεται σε πεπερασμένο αριθμό βημάτων, και η πολυπλοκότητά του αλγορίθμου δεν διαφέρει από
την πολυπλοκότητα του αλγορίθμου για ακεραίους.


Υγ. τι τα θες αυτά ρε μαν;

Σημείωση: Το μήνυμα αυτό γράφτηκε πάνω από 6 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

0 Δεν μπορείτε να αξιολογήσετε αρνητικά το μήνυμα αυτόΔεν μπορείτε να αξιολογήσετε θετικά το μήνυμα αυτό
Παράθεση

borat (Γιάννης.-)

Επιφανές Μέλος

Το avatar του χρήστη borat
Ο Γιάννης.- αυτή τη στιγμή δεν είναι συνδεδεμένος Είναι 33 ετών , επαγγέλεται Μαέστρος και μας γράφει απο Ερμιόνη (Αργολίδα). Έχει γράψει 4,524 μηνύματα.

O borat ΖΟΡΤ έγραψε στις 13:56, 31-01-11:

#5
Για μία εργασία Ρεμπ,
χέσε μέσα δηλαδή,
ξέρεις κανένα βιβλίο να πάρω πληροφορίες από εκεί;

Σημείωση: Το μήνυμα αυτό γράφτηκε πάνω από 6 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.

0 Δεν μπορείτε να αξιολογήσετε αρνητικά το μήνυμα αυτόΔεν μπορείτε να αξιολογήσετε θετικά το μήνυμα αυτό
Παράθεση
Απάντηση στο θέμα

Χρήστες

  • Τα παρακάτω 0 μέλη και 1 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα.
     
  • (View-All Tα παρακάτω 0 μέλη διάβασαν αυτό το θέμα τις τελευταίες 30 μέρες:
    Μέχρι και αυτή την στιγμή δεν έχει δει το θέμα κάποιο ορατό μέλος

Βρείτε παρόμοια

Μοιραστείτε το

...με ένα φίλο

...με πολλούς φίλους