io-io
Διάσημο μέλος


Σημείωση: Το μήνυμα αυτό γράφτηκε 18 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Subject to change
e-steki.gr Founder



Σημείωση: Το μήνυμα αυτό γράφτηκε 18 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Subject to change
e-steki.gr Founder



Σημείωση: Το μήνυμα αυτό γράφτηκε 18 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Subject to change
e-steki.gr Founder


Να αποδείξετε οτι ο αριθμός 1111...111 (ν ψηφία, όλα άσσοι), δεν είναι τέλειο τετράγωνο.
Σημείωση: Το μήνυμα αυτό γράφτηκε 18 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ALEX_
Πολύ δραστήριο μέλος


Μια ακόμα!
Να αποδείξετε οτι ο αριθμός 1111...111 (ν ψηφία, όλα άσσοι), δεν είναι τέλειο τετράγωνο.
Φαντάζομαι εννοείται τέλειο τετράγωνο ακεραίου,έτσι?
Σημείωση: Το μήνυμα αυτό γράφτηκε 18 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Subject to change
e-steki.gr Founder



Σημείωση: Το μήνυμα αυτό γράφτηκε 18 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Subject to change
e-steki.gr Founder



Άντε, άντε!
Σημείωση: Το μήνυμα αυτό γράφτηκε 18 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Subject to change
e-steki.gr Founder


Σημείωση: Το μήνυμα αυτό γράφτηκε 18 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Subject to change
e-steki.gr Founder



Σημείωση: Το μήνυμα αυτό γράφτηκε 18 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
io-io
Διάσημο μέλος


Σημείωση: Το μήνυμα αυτό γράφτηκε 18 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ALEX_
Πολύ δραστήριο μέλος


Α, στειλε μου οταν μπορεσεις τη λυση της κλεφτρας, εχω περιεργεια να δω πως αλλιως λυνεται!
Στείλτη μου βρε io-io και μένα τη δικιά σου γιατί κόλλησα και δεν θα την κοιτάξω άλλο...

Σημείωση: Το μήνυμα αυτό γράφτηκε 18 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ALEX_
Πολύ δραστήριο μέλος




Το έχω κάψει μου φαίνεται!
Σημείωση: Το μήνυμα αυτό γράφτηκε 18 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
io-io
Διάσημο μέλος


Απίστευτο!!!!Τόσο απλό???
Το έχω κάψει μου φαίνεται!

Σημείωση: Το μήνυμα αυτό γράφτηκε 18 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Subject to change
e-steki.gr Founder



Να αποδειχθεί οτι κάθε τέλειο τετράγωνο ακεραίου έχει τουλάχιστον ένα άρτιο ψηφίο.
Φυσικά απο εδώ και πέρα, όποιος μου λύσει χρησιμοποιώντας αυτό την προηγούμενη είναι άκυρος.
Σημείωση: Το μήνυμα αυτό γράφτηκε 18 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
tanos56
Εκκολαπτόμενο μέλος
Subject to change
e-steki.gr Founder


Σημείωση: Το μήνυμα αυτό γράφτηκε 18 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
io-io
Διάσημο μέλος


Η ασκηση της Μισελ ελεγε οτι δεν ειναι τελειο τετραγωνο ακεραιου.
Εκτος αν δεν καταλαβα καλα τη λυση του tanou γιατι την ειδα πολυ βιαστικα.
Σημείωση: Το μήνυμα αυτό γράφτηκε 18 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ALEX_
Πολύ δραστήριο μέλος


Λοιπόν,η πρώτη είναι ευκολούτσικη για ζέσταμα...
Η δεύτερη το χοντραίνει λίγο το ματς...

1) Έστω α φυσικός αριθμός και β ακέραιος.Δείξτε ότι υπάρχει φυσικός αριθμός ν τέτοιος ώστε να>β
2)Αν ο n και ο n+2 είναι πρώτοι αριθμοί με n>3 να δείξετε ότι 12|n+(n+2)
( Το | είναι το σύμβολο της διαιρετότητας)
Ready...?Go!!!

Σημείωση: Το μήνυμα αυτό γράφτηκε 18 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Subject to change
e-steki.gr Founder


Άλεξ σε μισωωωω!! Τώρα θα έφευγα για μάθημα και θα με κάνεις να αργήσω!
Σημείωση: Το μήνυμα αυτό γράφτηκε 18 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
ALEX_
Πολύ δραστήριο μέλος


Άλεξ σε μισωωωω!! Τώρα θα έφευγα για μάθημα και θα με κάνεις να αργήσω!




Σημείωση: Το μήνυμα αυτό γράφτηκε 18 χρόνια πριν. Ο συντάκτης του πιθανόν να έχει αλλάξει απόψεις έκτοτε.
Χρήστες Βρείτε παρόμοια
-
Τα παρακάτω 0 μέλη και 0 επισκέπτες διαβάζουν μαζί με εσάς αυτό το θέμα:Tα παρακάτω 2 μέλη διάβασαν αυτό το θέμα:
-
Φορτώνει...
-
Το forum μας χρησιμοποιεί cookies για να βελτιστοποιήσει την εμπειρία σας.
Συνεχίζοντας την περιήγησή σας, συναινείτε στη χρήση cookies στον περιηγητή σας.