Οκ, εφόσον δεν ασχολείσαι με ολυμπιάδες ξεσκόνισα λίγο το αρχείο μου και βρήκα μια άσκηση την οποία κατασκεύασα εγώ ο ίδιος μιας και μου το είχε ζητήσει ο θείος μου γαι να τη βάλει στα παιδια στο σχολειο σαν τεστακι 4ο θεμα...
Problem:
Αν η συνάρτηση
είναι συνεχής στο
παραγωγίσιμη στο
με
να δείξετε ότι υπάρχει
που ανήκει στο
τέτοιο ώστε
για κάθε πραγματικό αριθμό
Λοιπον:
1η περιπτωση: f σταθερη στο [α,β], τοτε f(χ) = 0 για καθε χ στο [α,β] και f'(x) = 0 για καθε χ στο [α,β], οποτε θα ισχυει f'(x) = 0 = k*0 = k*f(x) για καθε χ στο [α,β] και για καθε πραγματικο αριθμο κ
2η περιπτωση: f μη σταθερη στο [α,β]. Εστω ξ η μικροτερη ριζα της f στο (α,β] (αν η f δεν εχει ριζα στο (α,β) τοτε ξ=β), στο (α,ξ) οριζουμε τη συναρτηση h(x) = -κχ - 1/f(x), οπου κ ενας οποιοςδηποτε πραγματικος αριθμος. Εχουμε lim(x->a+)(h(x))= +oo η -oo και lim(x->ξ-)(h(x)) = +oo η -oo. Επηδη f(x) >< 0 στο (α,ξ) η f διατηρει προσημο στο (α,ξ), αρα τα παραπανω ορια θα ειναι και τα δυο ειτε +oo ειτε -oo, οποτε καθος το χ που μεταβαλλεται στο (α,ξ) προσεγγιζει ειτε το α ειτε το ξ η h αυξανεται η μειωνεται απεριοριστα, ετσι ευκολα προκειπτει (εδω θελει αρκετα λογια, μη τα γραφω ολα) οτι η h δεν ειναι γνησιως μονοτονη στο (α,ξ) αρα ουτε 1 - 1, οποτε υπαρχουν χ1,χ2 στο (α,ξ) με h(x1) = h(x2). Τωρα εχουμε: h συνεχης και παραγωγισημη στο [χ1,χ2] ως αθροισμα πολυωνυμικης με συνθεση ρητης με την f, h(x1) = h(x2), αρα απο Θ Rolle διαφορικου λογισμου προκειπτει οτι υπαρχει λ στο (χ1,χ2) με h'(λ) = 0 <=> -κ + f'(λ)/f(λ)^2 = 0 <=> f'(λ)/f(λ)^2 = κ <=> f'(λ) = κf(λ)^2
Παρατηρηση: τα ορια βγαινουν μη πεπερασμενα επηδη η f ειναι συνεχεις στο [α,ξ] οποτε ισχυει lim(x->α+)f(x) = f(α) = 0 = f(ξ) = lim(x->ξ-)f(x)